我真的只想当一个学神啊_第六百八十二章 一切的造假都无所遁形! 首页

字体:      护眼 关灯

上一章 目录 下一页

   第六百八十二章 一切的造假都无所遁形! (第1/8页)

    想在庞大无比的互联网世界里搜集奥巴代亚·肖恩的论文,让秦克自己来的话,花个三天三夜也未必能完成。不过有lv4的微光在,一切就轻松多了。哪怕许多期刊的电子版是收费的,微光都会自动拿秦克的信息进行注册,付费,打开后通过扫描的法子转换回普通的pdf文件格式保存来,以便秦克逐一

    不得不说,微光已是一个很合格的工作小助手了。

    在这期间,秦克与宁青筠一起研究n-s方程的论文细节。

    众所周知,纳维-斯托克斯方程(n-s方程)建立了流体的粒子动量的变化率,以及作用在液体内部的压力的变化、耗散粘滞力、引力之间的关系,是流体力学里非常重要的一组方程。对它的研究进展,直接影响到飞机设计、飞机发动机、工业流体机械、燃烧器的效率提高等工业领域的技术发展,以及气候、洋流等绝大多数宏观层面与流体力学相关的细分学科发展。

    “三维空间中的n-s方程组光滑解的存在性问题”(即寻找n-s方程的通解,以及证明该方程的解总是存在)会成为世界七大数学难题之一,除了因为它对流体力学的巨大作用,还因为它是非线性偏微分方程组,而且比欧拉方程多了一个二阶导数项,不对方程加以限定条件,很难求出精确解,目前只有在某些很简单的特例流动问题上才能求得其精确解。

    但如果找不到n-s方程的通解,那就无法从理论上推导出任何流体在任何起始条件下未来某个时间点的状态。

    为此无数数学家前仆后继地投入到这个n-s方程的通解问题中去,并创造出了许多新颖的数学方法,正是这些数学方法,促进了对非线性偏微分方程的研究。

    宁青筠的“无限流算法”就是非线性偏微分方程里一个非常优秀的
加入书签 我的书架

上一章 目录 下一页